Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells.
نویسندگان
چکیده
In t(8;21) acute myeloid leukemia (AML), the AML1/ETO fusion protein promotes leukemogenesis by recruiting class I histone deacetylase (HDAC)-containing repressor complex to the promoter of AML1 target genes. Valproic acid (VPA), a commonly used antiseizure and mood stabilizer drug, has been shown to cause growth arrest and induce differentiation of malignant cells via HDAC inhibition. VPA causes selective proteasomal degradation of HDAC2 but not other class I HDACs (i.e., HDAC 1, 3, and 8). Therefore, we raised the question of whether this drug can effectively target the leukemogenic activity of the AML1/ETO fusion protein that also recruits HDAC1, a key regulator of normal and aberrant histone acetylation. We report here that VPA treatment disrupts the AML1/ETO-HDAC1 physical interaction, stimulates the global dissociation of AML1/ETO-HDAC1 complex from the promoter of AML1/ETO target genes, and induces relocation of both AML1/ETO and HDAC1 protein from nuclear to perinuclear region. Furthermore, we show that mechanistically these effects associate with a significant inhibition of HDAC activity, histone H3 and H4 hyperacetylation, and recruitment of RNA polymerase II, leading to transcriptional reactivation of target genes (i.e., IL-3) otherwise silenced by AML1/ETO fusion protein. Ultimately, these pharmacological effects resulted in significant antileukemic activity mediated by partial cell differentiation and caspase-dependent apoptosis. Taken together, these data support the notion that VPA might effectively target AML1/ETO-driven leukemogenesis through disruption of aberrant HDAC1 function and that VPA should be integrated in novel therapeutic approaches for AML1/ETO-positive AML.
منابع مشابه
Time- and residue-specific differences in histone acetylation induced by VPA and SAHA in AML1/ETO-positive leukemia cells
We analyzed the activity of the histone deacetylase inhibitor (HDACi) suberoyl-anilide hydroxamic acid (SAHA) on Kasumi-1 acute myeloid leukemia (AML) cells expressing AML1/ETO. We also compared the effects of SAHA to those of valproic acid (VPA), a short-chain fatty acid HDACi. SAHA and VPA induced histone H3 and H4 acetylation, myeloid differentiation and massive early apoptosis. The latter e...
متن کاملTargeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells.
The role of autophagy during leukemia treatment is unclear. On the one hand, autophagy might be induced as a prosurvival response to therapy, thereby reducing treatment efficiency. On the other hand, autophagy may contribute to degradation of fusion oncoproteins, as recently demonstrated for promyelocytic leukemia-retinoic acid receptor α and breakpoint cluster region-abelson, thereby facilitat...
متن کاملETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex.
The t(8;21) translocation between two genes known as AML1 and ETO is seen in approximately 12-15% of all acute myeloid leukemia (AML) and is the second-most-frequently observed nonrandom genetic alteration associated with AML. AML1 up-regulates a number of target genes critical to normal hematopoiesis, whereas the AML1/ETO fusion interferes with this trans-activation. We discovered that the fus...
متن کاملInhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells.
The (8;21) translocation, found in 12% of acute myeloid leukemia (AML), creates the chimeric fusion product, AML1-ETO. Previously, we demonstrated that the ETO moiety recruits a transcription repression complex that includes the histone deacetylase (HDAC1) enzyme. Here, we used inhibitors of HDAC1 to study the pathophysiology of AML1-ETO. Both the potent inhibitor, trichostatin (TSA), and the w...
متن کاملHeterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia.
Alteration of lineage-specific transcriptional programs for hematopoiesis causes differentiation block and promotes leukemia development. Here, we show that AML1/ETO, the most common translocation fusion product in acute myeloid leukemia (AML), counteracts the activity of retinoic acid (RA), a transcriptional regulator of myelopoiesis. AML1/ETO participates in a protein complex with the RA rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 321 3 شماره
صفحات -
تاریخ انتشار 2007